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Coherent and incoherent chaotic tunneling near singlet-doublet crossings
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In the spectrum of systems showing chaos-assisted tunneling, three-state crossings are formed when a
chaotic singlet intersects a tunnel doublet. We study the dissipative quantum dynamics in the vicinity of such
crossings. A harmonically driven double well coupled to a bath serves as a model. Markov and rotating-wave
approximations are introduced with respect to the Floquet spectrum of the time-dependent central system. The
resulting master equation is integrated numerically. We find various types of transient tunneling, determined by
the relation of the level width to the inherent energy scales of the crossing. The decay of coherent tunneling can
be significantly retarded or accelerated. Modifications of the quantum asymptotic state by the crossing are also
studied. The comparison with a simple three-state model shows that in contrast to the undamped case, the
participation of states outside the crossing cannot be neglected in the presence of dissipation.
[S1063-651%98)05212-X]

PACS numbg(s): 05.45+b, 05.30--d, 42.50.Lc, 03.65.Sq

[. INTRODUCTION exact crossing close to the avoided one, or else the order
within the doublet is reversed from one side of the crossing
In a quantum setting, the coexistence of regular and chato the other. The variety of configurations of such crossings
otic regions in a mixed phase space leads to a variety of sketched in Fig. 1.
uncommon coherence phenomena. Most prominent among In the present paper, we study chaotic tunneling in the
them is chaotic tunnelinfl—14], the coherent exchange of vicinity of singlet-doublet crossings, under the influence of
probability between symmetry-related regular islands thatlcoherent processes. Near a crossing, level separations de-
are Separated by a chaotic |ayer’ not by a static potentiaﬂate Vastly, in both dII’ECtIOI’]S, from the typ|Ca| tunnel Spht'
barrier. Chaotic tunneling comes about by an interplay ofing (see Fig. 1 This is reflected in time-domain phenomena
classical nonlinear, typically bistable, dynamics and quantuni@nging from the suppression of tunneling to a strong in-
coherence. It therefore reflects features of the classical pha§gease in its rate and to complicated quantum bigids In
space, such as the width of the chaotic lajeg] and the Sec. Il, we briefly review_chaotic tu.nneling in our working
structure of the “coast line’{11,12 separating it from the Model, a harmonically driven quartic double wgll5—17.
adjacent regular regions, as well as fine details of the quarﬁmglet—doublet crossings are identified and characterized by
tum spectrum such as exact and avoided crossings. In previpeir signature in terms of quasienergy and mean energy. We
ous workg[7,8], it has been shown that, as the chaotic |ayerdescribe the behavior of the eigenstates close to a crossing
grows with increasing nonlinearity, the tunnel splittings@nd analyze the coherent dynamics in terms of a simple
widen collectively. Superimposed on this global trend of thethree-state model. .
parameter dependence, however, there are strong fluctua- Tunneling is associated with extremely small energy
tions, occurring on a smaller parameter scale and restricted to
individual tunnel doublet$6,11,13,14. A major source of
these fluctuations are the disturbances of doublets, suffered
as they are intersected by other levels. The most common
type of such intersections is formed when a doublet, pertain-
ing to a pair of eigenstates located on symmetry-related
guantizing tori, encounters a singlet that belongs to an eigen-
state in the chaotic s§d0]. The chaotic states, even if they
no longer come in pairs close in energy, can still be classified
as even or odd. This fact determines the structure of the
singlet-doublet crossings: The partner in the doublet sharing
the symmetry of the chaotic singlet is repelled by the

singlet—together, they form an avoided crossing. The part- [, 1. Possible configurations of quasienergy crossings be-
ner with opposite symmetry must either be intersected in afyeen a chaotic singlet and a regular doublet. Different line types
signify different parity. See Sec. Il C for the labeling of the levels.
Note that only for configuration&),(b), is the order of the regular
*Present address: Division de Physique diigue, Institut de  doublet restored in passing through the crossing. In configurations
Physique Nuclaire, F-91406 Orsay Cedex, France. (c),(d), it is reversed.
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scales, all the more in the semiclassical regime we are intedoublets with energies below the top of the barrier. Accord-
ested in. It is therefore particularly sensitive to any disrup-ingly, the classical limit is reached by lettirigyA —c. The
tion of coherence as it occurs due to the unavoidable counfluence of the driving on the classical phase space structure
pling to the environment. As immediate consequences, this characterized by the rescaled amplitude
symmetry underlying the formation of tunnel doublets is
generally broken, and an additional energy scale is intro- F=5//8D 2
duced, the effective finite width attained by each discrete o ] o
level. Tunneling and related coherence phenomena are thg§d frequency». This implies that the classical dynamics is
rendered transients that occur, if at all, on the way toward§'dependent of the barrier heigbt o
an asymptotic equilibrium state. Singlet-doublet crossings, in The unperturbed HamiltoniaHo(x,p) is invariant under
turn, drastically change the nondissipative energy scales arifi€e parityP: x——x, p——p, t—t. This symmetry is gen-
replace the two-level by a three-level structure. As a conseerally destroyed by the driving. With the above choice of
quence, the familiar way tunneling fades out in the presenchl1(X;t), however, a more general, dynamical symmetry is
of dissipation is also significantly altered. Near a crossingetained[15-17,24. It is defined by the operation
the coherent dynamics can last much longer than for the
unperturbed doublet, despite the presence of the same deco- P
herence than OUtS!fje the crossing, establlshmg “Chaosénd represents a generalized parity acting in the extended
induced coherence.” Depending on temperature, it can alSBhase space spanned by p, and phase, ie., time
be destroyed on a much.shorter t'me. .scafle. t mod (27/ w). The invariance undeP,, of H(x,p;t) allows

In Sec. Il, we first outImg thg: m.odlflcatlons of our model us to classify all its quantum eigenstates as even or odd.
necessary to incorporate dissipation. We treat the quantum As a consequence of the periodic time dependence of

dissipative dynamics within the framework of the FquuetH( . .
! . X,p;t), the relevant generator of the quantum dynamics is
formalism[18—23. In the present context of an interplay of now the Floguet operatd@5—29

tunneling with incoherent processes, we focus on the regime
of weak dissipation. Very long time scales are therefore in- i (2wl
U=Texp( J dtH(t)),

o X— =X, p—-—p, t—t+7a/o, 3

il @

volved, both in the coherent dynamics and in the bath re-
sponse. In this case, the usuMarkov and rotating-wave

approximations resorted to in the elimination of the eXtemalNhereT denotes time ordering. According to the Floguet

degre_es of freedo"f" have to bg reconsidered critically. Thﬁweorem, the adiabatic states of the system are the eigenstates
coupling to the environment indirectly couples the three lev-

els in the crossing to all the other states of the central systen%).]c U. They can be written in the form
On the basis of numerical results for the full driven double |l//a(t)>:efieat/ﬁ|¢a(t)>, (5)
well with dissipation, we reveal the limitations of the three-

level approximation and identify additional features of thewith

full dynamics not covered by it. In particular, we consider

the long-time asymptotics—the quantum attractor—and the | (t+27 w))=|,(1)).

phase-space structure associated with it. Section IV serves to

summarize our results and to suggest directions of furtheFxpanded in the basis spanned by these Floquet states, the
research. propagator of the driven system reads

Il. CONSERVATIVE CLASSICAL Ut t)=>, e '« =01 g (")) (1)]. (6)
AND QUANTUM DYNAMICS @
A. The model and its symmetries The associated eigenphases referred to as quasienergies,

As a prototypical working model, we consider the quarticOme in classes, ,= €, +nhw,n=0,21x2, ... .Thisis
double well with a spatially homogeneous driving force har-Suggested by a Fourier expansion of fiie(t)),
monic in time. It is defined by the Hamiltonian

Hpw(X,p;t) =Ho(X,p) +H(x;t),

p2 1 5 1 4 w (27w ot
Ho(x,p) = o~ 33+ s, & Cn= o] dtlg0) e @

|¢a<t)>=§ |Can)y €711,

H1(x;t) =S xcoq wt). The indexn counts the number of quanta in the driving field.
Otherwise the members of a clagsare physically equiva-

Apart from mere scaling, the classical phase space odfnt. Therefore, the quasienergy spectrum can be reduced to
Ho(x,p) depends only on the presence or absence, and thesingle “Brillouin zone,” —f w/2< e<fiw/2.

sign, of thex? term. Otherwise, it has no free parameter. In ~ Since the quasienergies have the character of phases, they
the quantum-mechanical case, the paramBté plays the can be ordered only locally, not globally. A quantity that is
role of an inverse quantum of action. It controls the barrierdefined on the full real axis and therefore does allow for a
height and can be interpreted as thpproximatg number of  complete ordering, is the mean enef@8,29
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w J’Zﬂ'/w
E,=— dt t)| H(t t
«=5a ), AUTOIHO ga(D) osl
={(da(t)|H(1) [du(1)))- )
e
It is related to the corresponding quasienergy by R
=%
. d
Eo=€at{(¢alt)] Iﬁﬁl%(t)», €)
0.5
where the outer angle brackets denote the time average over

one period of the driving, as indicated in E§). The second : : , : : ' :

term on the right-hand side plays the role of a geometric 15 L0 05 (\)/O_ 05 10 15

phase accumulated over this peri@0D]. Without the driv- =/v8D

ing, E,=€,, as it should be. By inserting the Fourier expan-  FIG. 2. Stroboscopic classical phase-space portraitsetat

sion (7) the mean energy takes the form =27n, of the harmonically driven quartic double well, Ed), at
F=0.015,w0=0.982.

Ee=2 (€0t Nfi0) (CapnlCan). (10
n (Fig. 2): The separatrix is destroyed as a closed curve and

It shows that thenth Floquet channel gives a contribution replaced by a homoclinic tang|&1] of stable and unstable

5 h iahted by the Fouri ¢ manifolds. As a whole, it forms a chaotic layer in the vicinity
€atNho to the mean energy, weighted by the Fourier coet- g it the topology of the former separatrix. It opens the
ficient (c,.n|Cu.ny [29].

s ! . ) ay for diffusive transport between the two potential wells.
Quasienergies and Floquet states are obtained numerical

b vina th L | F26 28,2 ue to the nonlinearity of the potential, there is an infinite
y solving the matrix eigenvalue equatifb,28,29 set of resonances of the driving with the unperturbed motion,

both inside and outside the well32,33. Since the period of
Z 2 Hukn’ k'Cnr k' = €Cn k. (11)  the unperturbed closed trajectories diverges Eer 0, the
n' ok resonances accumulate towards the separatrix of the unper-
turbed system. By its sheer phase-space area, the first reso-
nance(the one for which the periods of the driving and of the
unperturbed oscillation are in a ratio of l:l prominent
t%Ymong the others and soén terms of increasing amplitude
F) exceeds the size of the “order-zero” regular areas near
the bottom of each well. For the valuesfofindw chosen in
the numerical calculations in this paper, all higher reso-
nances remain negligible in size. The borderline between the

equivalent to the time-dependent Sdltirmger equation. It is
derived by inserting the eigenstat&s into the Schrdinger
equation, Fourier expanding, and using the representation
the eigenstates of the unperturbed Hamiltoniéhy| ¥ )
=E,|¥,). We introduced the abbreviations

Hikinr k' = (Ex=Nh @) 6y nr Sk

1 chaotic layer along the former separatrix and the regular re-
+5S %k (Sn-1-n+ Snra-n), gions within and outside the wells is therefore quite sharply
defined. The “coastal strip” formed by hierarchies of regular
Cr=(W/cy) islands around higher resonances remains narrow. For the
nk kI=n/> tunneling dynamics, the role of states located in the border
X = (W X | W), region[11] is therefore not significant here.

Both major tendencies in the evolution of the classical
The invariance of the system undBy, is of considerable Phase space—extension of the chaotic layer and growth of

help in solving Eq(11), because it completely decouples the the first resonance—leave their specific traces in the quasien-

respective systems of eigenvalue equations for the even arfidy Spectrum. The tunnel doublets characterizing the unper-
odd subspace¥,8]. turbed spectrum foE<<O pertain to states located on pairs of

symmetry-related quantizing tori in the regular regions
within the wells. With increasing size of the chaotic layer,
the quantizing tori successively resolve in the chaotic sea.
With the drivingH(x;t) switched off, the classical phase The corresponding doublets disappear as distinct structures
space generated by(x,p;t) exhibits the constituent features in the spectrum as they attain a splitting of the same order as
of a bistable Hamiltonian system. There is a separatri at the mean level separation. The gradual widening of the dou-
=0. It forms the border between two sets of trajectories: Ondlets proceeds as a smooth function of the driving amplitude
set, withE<0, comes in symmetry-related pairs, each part{7,8]. This function roughly obeys a power 14&4], see Fig.
ner of which oscillates in either one of the two potential 3. As soon as a pair of states is no longer supported by any
minima. The other set consists of unpaired trajectories, withoruslike manifold, including fractd35] and vague tori36],
E>0, that encircle both wells in a spatially symmetric fash-the corresponding eigenvalues detach themselves from the
ion. regular ladder to which they formerly belonged. They can
Increasing the amplitude of the driving from zero onwardsthen fluctuate freely in the spectrum and thereby “collide”
has two principal consequences for the classical dynamicwith other chaotic singlets or regular doublets.

B. Coherent chaotic tunneling
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%] As the third player, we introduce a Floquet state
107 ak
] - — il +ATADUR| 4
w0 Ap o |¥e (D) =e [be (1)), (15)
g ool L o f ] located mainly in the chaotitsubscript ¢ layer, so that its
% 3 6 Ae . time-periodic parf ¢, (t)) contains a large number of har-
§ 102 I Bl 1Y 1 monics. Without loss of generality, its generalized parity is
S I XX 0@00 1 fixed to be odd. For the quasienergy, we have assumed that
105t X Nl 1 e. =€ +A+A., where|A | can be regarded as a measure
; s M%&ﬁ; o o 1 of the distance from the cross_ing. o
10"} t ¢ ‘ ‘ The structure of the classical phase space then implies
10 10° 107 that the mean energy of the chaotic state should be close to
F the top of the barrier and far above that of the doublet. We

FIG. 3. Dependence on the driving amplitude of the splitting Ofassume, as for the quasienergies, a small SIpIEIitting of the
. 3. . o i
the ground-state doublet, of the harmonically driven quartic doublemean energies pertaining to the regular doubliet,—E,

well, Eq. (1), atD/A=8 andw=0.95. Diamonds are quasienergy, <Ec. —E. . ) _

crosses are mean-energy splitings. The dips interrupting the [N order to model an avoided crossing betwggn) and

smooth parameter dependence indicate crossings of the grounf4; ), we suppose that there is a nonvanishing matrix ele-

state doublet with chaotic singletafter Ref.[8]). ment(( ¢, |Hpw| ¢¢ ))=b>0. For the singlet-doublet cross-
ings under study, we typically find that<b<# w. Neglect-

The appearance of a regular region, large enough to agng the coupling with all other states, we obtain the three-

commodate several eigenstates, around the first resonansete(subscript 35 Floquet Hamiltonian

introduces a second ladder of doublets into the spectrum.

Size and shape of the first resonance vary in a way different 0 0 0

from the fate of the main regular region. The corresponding Hemet+| 0 A b 16

doublet ladder therefore moves in the spectrum indepen- 3~ €r ' (16

dently of the doublets that pertain to the main regular region, 0 b A+A.

and of the chaotic singlets. This gives rise to additional ) _ _

singlet-doublet and even to doublet-doublet encounters. In the three-dimensional Hilbert space spanned by
{1, (1)), (1)),|be (1))} Its Floguet states read

C. Three-level crossings

FOON et g+
Among the various types of quasienergy crossings that |4 ()=e"" 0™/ (1)),
occur according to the above scenario, those involving a o
regular doublet and a chaotic singlet are the most common. |1 (H)=e""1""[|¢"(t))cosB— |, (1))sin ],
In order to give a quantitative account of such crossings and 17

the associated coherent dynamics, and for later reference in
the context of the incoherent dynamics, we shall now discuss |y, (t))=e""2V"[|$; (t))sinB+| . (t))cosA].
them in terms of a simple three-state model, devised much in
the spirit of Ref.[5]. Their quasienergies are

Far to the left of the crossing, we expect the following
situation: There is a doublet of Floquet states

1 1
€ =€ . €,=€ FA+ EAcizx/Ag+4b2. (18

P
[ (1) =e"" Vg (1)), (12
. The mean energies are approximately given by
|l (1)) =e""& Vg (1)), (13
Eqs =E,,
with even (superscript+) and odd(—) generalized parity,
respectively, residing on a pair of quantizing tori in one of E; =E, co€B+E_ sir’g, (19
the regular(subscriptr) regions. We have assumed that the
qguasienergy splittingas opposed to the unperturbed split- E, =E. si?B+E, cogg,

ting) is €, —¢; =A>0. The global relative phases can be

chosen such that the superpositions where contributions of the matrix elemelthave been ne-

glected. The angl@ describes the mixing between the Flo-

1 _ i ) :
i _ quet state$y, ) and| . ) and is a measure of the distance to
|¥r (1) = \/E[Wf ()= (1)] (14 the avoided crossing. By diagonalizing the Hamilton(&6),

we obtain

are initially localized in the right and the left well, respec-
tively, and tunnel back and forth with a frequenky# given

2b T
= — <B<=.
by the tunnel splitting in the presence of the driving. 2B arctar( Ac)’ 0<p 2 (20
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/ \\
4p - (@) €7 1 0001~ @
- 2b L 2b // AC . \\\
7 [ < .
T A Y ~ U~ +
s L. __- + -7 +e el €3 —€;
‘% 0 S S | 00— = =========-
] ot - S
3 0 : 3 ~
< //T < N +
2b F ~61 — €6
abt -0.001 a b ¢
-10 0 5 10 0.014 0.0145 0.015 0.0155 0.016
Ac/b F
_______ L S, . g . S S
: (b)
(b) EZ 2t
———————— o e B et Bl _ommmmm-
= ol \\\ 7 By | S //
g \ ,/ £ 9 % lL
A\ 3
g v/ S |t X [ Unitininbabenl il
g /)\ ) N
QS) / \\ 2t \ lI \\
P ) doublets .,/ N
’ N\ - / ” ~
RENNRANG N — e
_______ - Er s TP E(-]F
-D EF _ s A .
. 0 , 0.014 0.0145 0.015 0.0155 0.016
-10 -5 0 5 10 F
Ac/b FIG. 5. Singlet-doublet crossing found numerically for the

FIG. 4. A singlet-doublet crossing, according to a three-statedr'ven double well, Eq(1), atD/7 =4 andw=0.982, in terms of

model, Eq.(16), in terms of the dependence of the quasienergies"® ﬁepdepqence Ofl_th‘; qu_a;}ejﬂgﬁse:nd th‘: ?ee(tjn_e_nergiéb)l'
[panel (a)] and the mean energidb) on the coupling parameter on the driving amplitudé™=5/y8D. Values of the driving ampli-

A./b. Unperturbed energies are marked by dotted lines, the enewde use_d in _Fig_s. 7 are marKEd by dotted vertical lines. Full gnd
gies for the case with coupling by full lines for even and OIaSheOIdashed lines indicate energies of even and odd states, respectively.
lines for odd states Bold lines give the mean energies of the chaotic singlet and the

ground-state doublet depicted in panel a.

1 : o
For B— /2, corresponding te- A.>b, we retain the situa- lp(t))= —[e*'fg“h|¢§(t))+e*'fl Y| 1 (t))cosp
tion far left of the crossing, as outlined above, wijty ) V2
~|¢ ), |, )=, ). To the far right of the crossing, i.e., for +eie | g (1))singl. (22)

B—0 or A;>Db, the exact eigenstateg; ) and |y, ) have
interchanged their identity with respect to the phase-spack is constructed such that &0, it corresponds to the de-
structure[10]. Here, we havéy; )~|y, ) and|y, )~|¢s).  composition of (i, )+ |, ))/\2 [cf. Eq.(14)] in the basis

The mean energy is essentially determined by the phase-

space structure. Therefore, there is also an exchangg of 10
andE, in an exact crossing, cf. EGL9), while E; remains 103 avoided
unaffected[Fig. 4(b)]. The quasienergies; ande; must 104 |
intersect close to the avoided crossingeqf and e, [Fig. S
4(a)]. Their crossing is exact, since they pertain to states with 5: 107 ¢
opposite parityfcf. Fig. 1(a),1(b)]. <4 105 F
Numerical evidence shows that this idealized picture is a2t
not always correct. It may well happen that even far away 10
from a crossing, the doublet splitting does not exactly return 10° % 1
to its value on the opposite sidlef. Figs. 5a), 6]. It is even 102 F ]
possible that an exact crossing €f ande; does not take

0.0 0.005 0.01 0.015 0.02 0.025

place at all in the vicinity of the crossing. In that case, the 7

relation of the quasienergies in the doublet gets reversed via
the crossing[Fig. 1(c),1(d)]. Nevertheless, the above sce- FiG. 6. Splitting of the lowest doublets fdb/A=4 and w
nario captures the essential features. =0.982. The arrows indicate the locations of the exact and the

To study the dynamics of the tunneling process, we focugwoided crossing within a three-level crossing of the type sketched
on the state in Fig. 1(a).
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(17) at finite distance from the crossing. Therefore, it is ini- 1.0 " YUY
tially localized in the regular region in the right well and M "
follows the time evolution under the Hamiltoniab6). From 08
Egs.(14) and(17), we find the probabilities for its evolving
into | ), | ), Or |¢), respectively, to be 06 |
Pr(t) =K yr(O]w(1)
) ) 0.4 |
€ €
=2( 1+ cos—co€B+ cos—sirt 3
2 f f 02t
€1— et
+ co( ! z 2) -1 coszﬁsinzﬂ), 0.0
PLO =y (D] ()P
1 €qt et
_5( 1—cos?cos?/3—cos?sm2/3
(€1~ et .
+| cos————-1 cogBsirtB|, (22
2 (€1~ €t .
Po(t) =K gre()] (1)) [P=| 1~ cos———— | coS B sir’ .
At a sufficient distance from the crossing, there is only a
little mixing between the regular and the chaotic states, i.e.,

sinB<<1 or cosB<1. The tunneling process then follows the
familiar two-state dynamics involving onlys,”) and |, ),
with tunnel frequencyA/# [Fig. 7(a)]. 1.0
Close to the avoided crossing, g@®nd singd are of the
same order of magnitude, ahdl, ), |, ) become very simi-

lar to one another. Both now have support in the chaotic 08
layer as well as in the symmetry-related regular regions and

thus are of a hybrid nature. Here, the tunneling involves all g 0.6
the three states and must at least be described by a three- A

level system. The exchange of probability between the two 04 1y
regular regions proceeds via a ‘“stopover” in the chaotic ‘

region[5,10]. The three quasienergy differences that deter- 0.2
mine the time scales of this process are in general all differ-
ent, leading to complicated bedfSig. 7(b)]. S0, s WG\ G\ N
However, forA.=—A/2, the 2 quasienergies; and 0 2x10° 3x10°
— €, degenerate. At this point, which marks the center of the tn = 2mn/w
crossing, th? number of different .frequtlenmes in the thre(?- FIG. 7. Time evolution of a state initially localized in the right
!EVEI dynamics redu.ces FO two again. This restores_ the fa_m'|\7vell, in the vicinity of the singlet-doublet crossing shown in Fig. 5,
lar Cohere_nt _tunnellng in the sense that there is again @ terms of the probabilities to be in the right wéleturn probabil-
simple periodic exchange of probability between the regulafy, marked by full lines, in the reflected state in the left well
regions[10]. However, the rate is much larger if compared t0 (asheq or in the chaotic stathy,) (dotted. Parameter values are
the situation far off the crossing, and the chaotic region iss in Fig. 5, andc=0.0145(a), 0.0149(b), 0.015029(c).
now temporarily populated during each probability transfer,
twice per tunneling cyclgFig. 7(c)]. [lI. INCOHERENT QUANTUM DYNAMICS
In order to illustrate the above three-state model and to A. Master equation
demonstrate its adequacy, we have numerically studied a
singlet-doublet crossing that occurs for the double-well po-
tential, Eq. (1), with D/hi=4, at a driving frequencyw To achieve a microscopic model of dissipation, we couple
=0.982 and amplitudé =S//8D=0.015029(Figs. 5 and the systen{1) bilinearly to a bath of noninteracting harmonic
6). A Comparison(not shown of the appropriately scaled oscilla§0rs[37]. The total Hamiltonian of system and bath is
three-state theorgFig. 4) with this real singlet-doublet cross- then given by
ing (Fig. 5 shows satisfactory agreement. Note that in the o 2 2
real crossing, the quasienergy of the chaotic singlet H(t)=Hpw(t) + > Py +Qw2(x _ 9 x) _
creasesas a function of-, so that the exact crossing occurs =1|2m, 2 7T m 2
to theleft of the avoided one. (23

1. System-bath model
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We here couple the positianof the system to an ensemble 1
of oscillators with masses,,, frequenciesw,, momenta Ni( €)= T T Nip(—€e)—1 (30
p,, and coordinateg, , with the coupling strengtly, . The et —1

bath is fully characterized by the spectral density of the cou- ) ) )
is the thermal occupation of the bath oscillator with energy

pling energy X .
To achieve a more compact notation, we requife- w) =
© g —J(w). In the following, we shall restrict ourselves to an
Jw)y=7m2, 2mV S(w—w,). (24  Ohmic bath,J(w)=myw. This defines the effective damp-
v=1 VwV

ing constanty.
We use the time-periodic componeis,(t)) of the Flo-

For the time evolution we choose an in.itia.ll condition of Fhequet states as a basis to expand the density operator, Eq.
Feynman-Vernon type: dt=t,, the bath is in thermal equi- (28). Expressing the matrix elements

librium and uncorrelated to the system, i.e.,

Xap(1)=(da()|X| (1)) (31)

] ] of the position operator by their Fourier coefficients
wherepg o= exp(— BHg)/trgexp(— BHg) is the canonical en-

semble of the bath and 8~kgT. Due to the bilinearity of Xapin={{Pa(D)|x e—inwt|¢ﬁ(t)>>zxza’_n, (32)
the system-bath coupling, one can always eliminate the bath
variables to get an exact, closed integro-differential equation

p(to)=ps(to) ®pg eqr (25

for the reduced density matripg(t) =trgp(t), which de- Xaﬁ(t)=2 ei““’txalgvn, (33
scribes the dynamics of the central system, subject to dissi- n
pation[38].

yields for the matrix elements,, of the reduced density

2. Born-Markov approximation maitrix pg the equation of motiofi18,19,21,23

In most cases, however, the integrodifferential equation d
for ps(t) can be solved only approximately. In particular, in = ,5(1)= 7 (ba(D]ps(D)]P4(1))
the limit of weak coupling,

i
y<kgT/h, (26) =~ 7 (€a—€p)Tap(l)

y<|€e,— € |lt, 27
+ 2 (Naar’nxaa/'no'a/’g/xB/ﬁvnr
it is possible to truncate the time-dependent perturbation ex- a’gnn

pansion in the system-bath interaction after the second-order ~ N g nXaar n Xaar na_ﬁrﬁ)ei(n+n’)wt+chl
term. The quantityy, to be defined below, denotes the effec- “ ganen
tive damping of the dissipative system, drg—€,/|/% are (34)

ote that the coefficients of this differential equation are

case, the central system is understood to include the driving .~ <" ° ) . -
4 eriodic in time with the period of the driving. T,z , are

[20-23, so that the transition frequencies are given by"
quasienergy differences. The autocorrelations of the bath d&iVen by
cay on a time scalé/kgT and thus in the present limit,
instantaneously on the time scaleyWdf the system correla- _ _ _Mmye
tions. With the initial preparatiofi25), the equation of mo- Nugn=N(eo~€gt o), N(€)=—5na(e). (39
tion for the reduced density matrix in this approximation is
given by[23] For e>kgT, N(€) approaches zero.

Since the position operatoris odd under transformation
with the generalized parit{8), the master equatior{8) and
(34) are invariant under transformation wik),. Therefore,
both the conservative and the dissipative dynamics preserve
the parity of the operatod,)(¢g. It is even if|¢,) and
| ) belong to the same parity class and odd otherwise. Note
that in particular, the projectois,){¢,| and thus all den-

wherex(t’,t) denotes the position operator in the interactionSity matrices diagonal in the Floquet basis are even under
picture defined by P,

the transition frequencies of the central system. In the preserél

. i 1 (=
ps(t)=— g[Hs(t),Ps(t)]"‘ %J,wdw J(w)np(fiw)

X f:df{eiwf[i(t—T,t)ps(t),x]+H.c.}, (28)

;((t’ )= UT(t’ D xUtD), (29) 3. Rotating-wave approximation

Assuming that dissipative effects are relevant only on a
with U(t’,t), the propagator of the conservative driventime scale much larger than the period/2 of the driving,
double well, given in Eq(6). H.c. denotes the Hermitian we average the coefficients of the master equa@h over
conjugate and 27/ w and end up with the equation of motion
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1.0

) I ~~~~~~~~ -
a-aﬁ(t): - g(ea_ Eﬁ)a-aﬁ(t)+ 2 Laﬁa’ﬁ’a-a’ﬁ' o T T '/4‘,\'"—:\—-‘\ _____________
a'p’ —~ 08 (a) 7 N TS o
(36) & / \
Y /L0 .
with the time-independent dissipative part = 06} /f S
J s,
L L I I A E D SR
Laﬁa’ﬁ’zz (Naa’,n+Nﬁﬁ’,n)xaa’,nxﬁ’ﬁ,—n \.,-5/ 0.4 / 098 |
n q, /,’
021 ’ )
. 0 2x107°
_5ﬁﬁ’2 Nﬁrrar’nxa'gn'_nxlguar’n - \\\
ﬁ”,n 0.0 T Dy T STV oo
' 2x10°  3x10°  4x10°  5x10°
- 5010/2 Norgr nXprar,~nXarpn - (37) tn = 2T /W
“n 10 -
This step amounts effectively to a rotating-wave approxima- '
tion. It is, however, less restrictive than the rotating-wave  ~ 08
approximation introduced in Reff20,21] where dissipative =
effects are averaged over the generally longer time scale § 06|
max, g [ 27h/(€,— €+ Nhw)].
3 04
B. Dissipative chaos-assisted tunneling ij
The crucial effect of dissipation on a quantum system is 02
the disruption of coherence: a coherent superposition evolves
into an incoherent mixture. Thus, phenomena based on co- 00 VY YV
herence, such as tunneling, are rendered transients that fade 0 100 2x10°  3x10°  4x10°  5x10°
out on a finite time scaléy.... 1N general, for driven tun- tn = 2mnjw

neling in the weakly damped regime, this time scale gets ) o i
shorter for higher temperatures, reflecting the growth of tran- FG- 8. Occupation probabilities as in Figgarand 7c), butin
sition rates[39]. However, there exist counterintuitive ef- the presence 02f dissipation. The dash-dotted line shows the time
fects. For example, in the vicinity of an exact crossing of theSVolution of trp”. The parameter values a4 =4, ©=0.982,y
ground-state quasienergies, the coherent suppression of tunil  Kel/#=10"", andF=0.0145(), 0.015029b). The inset
neling [15] can be stabilized with higher temperatures'n (a) is a blow up of the rectangle in the upper left corner of that

[18,19,4Q until levels outside the doublet start to play a role. panel.

We have studied dissipative chaos-assisted tunneling Nigaqure to be meaningfut, should be so large that the coher-
merical_ly, using again th_e real singlet-dogblet crossing introunce decays substantially during the titr@& our numerical
duced in Sec. Il dsee Fig. 3 as our working example. studies to a value of approximately D.9he time scaleeay

In the vicinity of a singlet-doublet crossing, the tunnel ¢ (e anproach to the asymptotic state is given by the recip-
splitting -increases significantly—the essence of chaos- roc4| of the smallest real part of the eigenvalues of the dis-
assisted tunneling. During the tunneling, the chaotic S'nglegipative kernel.
becomes populated periodically with frequeniey — e, |/, Outside the singlet-doublet crossing we find that the de-

cf. Eq.(22) and Fig. 7. The high mean energy of this singletcqy of coherence and the relaxation take place on roughly the
results in an enhanced decay of coherence at times when

| ) is populated(Fig. 8). For the relaxation towards the 1.0
asymptotic state, also the slower transitions within doublets

are relevant. Therefore, the cprresponding time stalg = 08
can be much larger thane.o, (Fig. 9. =
To obtain quantitative estimates for the dissipative time ; 0.6

scales, we approximatge..n by the decay rate of 2, a
measure of coherence, averaged over time,

£ 04
1 lft d .
=—— [ dt'—trp?(t’) (38
tdecoh tlo dt’ a 0.2
Lo 2 2 0.0 o 7
=—[trp(0)—trp<(t)]. (39 0 5x10 10
t t, = 2mn/w
Because of the stepwise decay of the coheré¢hig 8), we FIG. 9. Time evolution of the return probabilityg (full line)

have chosen the propagation timas ann-fold multiple of  and the coherence functiongf (dash-dottefiduring loss and re-
the duration 2r/| e, — €; | of the chaotic beats. For this pro- gain of coherence. The parameter values are as in Fiy. 8
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@) ' ' _ kBT/h':m_él of the dissipative kernel. They give the rates of the direct
108k - kT/R =100 | transitions from|¢,/) to |¢,). Within a cruder rotating-
--------- ksT/h =102 wave approximatiorf21], these are the only nonvanishing
contributions to the master equation which affect the diago-
nal elementsr,, of the density matrix.

In the case of zero driving amplitude, the Floquet states
|¢,) reduce to the eigenstates of the undriven Hamiltonian
Hpw. The only nonvanishing Fourier component is then
|c..0), and the quasienergies, reduce to the corresponding
eigenenergie€,. ThuslL .., consists of a single term
proportional toN(e,— €,+) only. It describes two kinds of
001 0012 0014 00l6 0018 002 thermal transitions: decay to states with lower energy and, if

F the energy difference is less th&gT, thermal activation to
. . . , states with higher energy. The ratio of the direct transitions
(b) — kpT/h=10"* forth and back then reads
108 ——- kpT/h=10"3 1
-_\ --------- kaT/h =107 Laaa’a' (Ea_ ea’)
= p( - ) (41

keT

L

a'a' aa

trelax

We have detailed balance. Therefore, the steady-state solu-
tion o 44/ (°) ~exp(—e,/kgT) 6, . In particular, the occupa-
tion probability decays monotonically with the energy of the
eigenstates. In the limkgT— 0, the system tends to occupy
the ground state only.
001 0012 0014 00l6 0018 002 For a strong drivir]g, each Floquet statg,) _cor_1tains a

F large number of Fourier components dng,,,+ is given by
a sum over contributions with quasienerg&s- €, + nfiw.
Thus a decay to states with “higher” quasienefggcall that
guasienergies do not allow for a global ordejirgpcomes
ossible due to terms with<<0. Physically, they describe
(F~0.015, dashed vertical linghe decay of coherence is acceler- cﬁssmatlve tranSItlo_nS under absorption of driving-field
ated. The parameter values @éh =4, »=0.982,y=10"¢, tem- quanta, Corre_s_pondlngly, the _system tends to oceupy F_quuet
perature as given in the legend. states comprising many Fourier components with low index

n. According to Eq(10), these states have low mean energy.

same time scaléFig. 10. At F~0.013, the chaotic singlet The effects under study are found for a driving with a
induces an exact crossing of the ground-state quasienergiérequency of the order of unity. Thus for a quasienergy dou-
(see Fig. 6 resulting in a stabilization of coherence with blet, i.e., far off the three-level crossing, we hg¥g— e, |
increasing temperature. At the center of the avoided crossingg# w, and L, .., iS dominated by contributions with
the decay of coherence becomes much faster and is essen®, where the splitting has only small influence. However,
tially independent of temperature. This indicates that transias a consequence of symmetry, the splitting is the main dif-
tions from states with mean energy far above the grounderence between the two partners of the quasienergy doublet.

FIG. 10. Time scales of the decay ofpff (a) and of the relax-
ation towards the asymptotic solutigh) near the singlet-doublet
crossing. Near the exact crossing~0.013, full vertical ling co-

state play a crucial role. Therefore, with respect to dissipation, both should behave
similarly. In particular, one expects an equal population of
C. Asymptotic state the doublets even in the limit of zero temperatiifég.

As the dynamics described by the master equat@® is 11@]. Th|§ IS In contrast to the undriven case.
dissipative, it converges in the long-time limit to an In the vicinity of a singlet-doublet crossing the situation is
asymptotic state.,(t). In general, this attractor remains time more subtle._He_re, the odd partner, say, of the d(_)ublet MIxes
dependent but shares all the symmetries of the central syg\fIth a chaotic singlet, cf. Eq17), and thus acquires com-
tem, i.e., here, periodicity and generalized parity. HoweverPOnents with higher energy. Due to the high mean enkgy
the coefficients of the master equatié8) for the matrix of the chaotic singlet, close to the top of the barr_lerz the
elementso 4, valid within a rotating-wave approximation, decay back to the ground state can also proceed indirectly
are time independent and so the asymptotic solution also i¥ia Other states with mean energy belBw . Thus| ;) and
This means that we have eliminated the explicit time depenk# ) are depleted and mainlyb, ) will be populated. How-
dence of the attractor by representing it in the Floquet basi§Ver, if the temperature is significantly above the splitting of

and introducing a mild rotating-wave approximation. the avoided crossing, thermal activation frog ) to | ¢, ),
To gain some qualitative insight into the asymptotic solu-accompanied by depletion via the states belyw, becomes
tion, we focus on the diagonal elements possible. Thus asymptotically, all these states become popu-
lated in a steady flofFigs. 11b),11(c)].

2 / (40) An important global characteristic of the asymptotic state

, aFa, L. . .
is its coherence 2. Its value gives approximately the re-

Laaa’a’ = 22 Naa’,n|xaa’,n
n
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10° 1.0 — . . :
—yd) (@) W ET/h=10"" a
[ ksT/f = 1073 08|
_ O kgT/h =102
o LIl A -
. ~8 06+
S l¥3) Pl I
04} N
102 £ : L ksT/R=0 %
02| — EeT/n=10""
-~ kgT/h=10"3 ./
--------- ksT/h =102
10»3 il 0.0 L L L L L L
012345678 9101112131415 0.01 0.012 0.014 0016 0.018 0.02
Floquet-state index « F
10° FIG. 12. Coherence of the asymptotic state in the vicinity of a
— ) (b) M ksT/h =101 singlet-doublet crossing for different temperatures as given in the
E kgT/h =103 legend. The other parameter values By =4, ©=0.982, andy
3 [ kgT/h = 1072 =1076.
10k ‘—|¢1 )
g 7) The crucial role of the decay via states not involved in the
e 2 three-level crossing can be demonstrated by comparing it
with the dissipative dynamics including only these three lev-
107 ¢ els (plus the bath At the crossing, the three-state model
results in a completely different type of asymptotic state
(Fig. 13. The failure of the three-state model in the presence
107 of dissipation clearly indicates that in the vicinity of the
012345678 9101112131415 singlet-doublet crossing, it is important to take a large set of
Floquet-state index o levels into account.
10°
‘—WSL) (c) M kT /h=10"* IV. CONCLUSION
_ _, @kpT/A=10"3
lv2) 1) O kryn = 10-2 Nonlinear systems with a mixed phase space still repre-
0t | sent a formidable challenge for a theoretical understanding.
s On the classical level, the intricate fractal interweaving of
N regular and chaotic regions of phase space is far from being
exhaustively studied. Quantum-mechanical uncertainty re-
107 E duces the richness of the classical phase-space structure, but
at the same time, coherence effects like tunneling add new
elements to the dynamics. For example, in a bistable system,
3 1 a driving with an energy in the regime between the unper-
107701 5 3 4 5 67 8 91011121314 15 turbed tunnel splittings and the typical separation of doublets
Floquet-state index o leads to transport phenomena that combine tunneling and
FIG. 11. Occupation probability,, of the Floquet stategs,,) 1.0 . . . . . .
in the long-time limit. The parameter values al%A=4, o | @ |

=0.982,y=10 ¢, andF =0.013(a), 0.0145(b), 0.015029c), tem-
perature as given in the legend.

ciprocal of the number of incoherently occupied states. It
equals unity only if the attractor is a pure state. According to
the above scenario, we expecpfrto assume the value 1/2,

in a regime with strong driving but preserved doublet struc-
ture, reflecting the incoherent population of the ground-state
doublet. In the vicinity of the singlet-doublet crossing where
the doublet structure is dissolved, its value should be close to 0.0 =3
unity for temperature&gT<<b and much less than unity for

kgT>b (Figs. 12,13 This means that the crossing of the

chaotic singlet with the regular doublet leads to an improve- FiG. 13. Coherence of the asymptotic state in the vicinity of a
ment of coherence if the temperature is below the splitting o&inglet-doublet crossing fdf=0.013(a) andF = 0.015029(b): ex-
the avoided crossing, and a loss of coherence for temperact calculation(full line) compared to the values resulting from a
tures above the splitting. This phenomenon amounts to @ree-level descriptiofdashed of the dissipative dynamics. The
chaos-induced coherenae incoherence, respectively. other parameter values abd% =4, »=0.982, andy=10"°.

kpT/h
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classical chaotic diffusion as essential elements. Yet anothatic phase-space region, one on the way to, one on the way
basic energy scale enters if the unavoidable coupling of thback.
system to its environment is taken into account. If the finite The study of the asymptotic state, the “quantum attrac-
width the levels attain in the presence of dissipation is comtor,” demonstrates clearly that a three-state model of the
parable, in turn, to the energies characterizing driven tunnekinglet-doublet crossing is no longer adequate once dissipa-
ing, unfamiliar phenomena due to the interplay of chaostion is effective. This is so because the coupling to the heat
tunneling, and decoherence occur in the transient dynamidsath enables processes of decay and thermal activation that
and possibly also in the asymptotic state of the drivenconnect the states in the crossing with other, “external”
damped gquantum system. states of the central system. In the presence of driving, the
In this paper, we have selected a specific case out of thasymptotic state is no longer literally a state of equilibrium.
host of problems to be studied in this field: dissipative cha-Rather, incoherent processes create a steady flow of prob-
otic tunneling in the vicinity of crossings of chaotic singlets ability involving states within as well as outside the crossing.
with tunnel doublets. In order to obtain a firm quantitative As a result, the composition of the asymptotic state, ex-
basis, we have endowed a prototypical model for chaotipressed, for example, by its coherencg?r will be mark-
tunneling, a harmonically driven double well, with dissipa- edly different at the center of the crossing as compared to the
tion. Thereby, we have followed the usual approach of couasymptotic state far away from the crossing, even if that is
pling to a heat bath, but adapted to the periodic time deperbarely visible in the corresponding phase-space structure.
dence of the central system. Moreover, we have carefully Many more phenomena at the overlap of chaos, tunneling,
avoided to destroy, by the approximations introduced in theand dissipation await being unraveled. They include four-
derivation of a master equation, the specific spectral charagtate crossings formed when two doublets intersect, chaotic
teristics of chaotic tunneling that we are interested in. As &Bloch tunneling along extended potentials with a large num-
simple intuitive model to compare against, we have conber of unit cells instead of just 2, the influence of decoher-
structed a three-state system which in the case of vanishingnce on a multistep mechanism of chaotic tunnefitig 12
dissipation, provides a faithful description of an isolatedand transient tunneling between coexisting strange attractors,
singlet-doublet crossing. to mention only a few. At the same time, analytical tools
As an example for the interplay of chaotic tunneling with more specifically tailored to the investigation of the
dissipation, we mention an effect that might be termedquantum-classical correspondence in mixed systems, such as
“chaos-induced coherence” for short. Suppose that damping phase-space entropg1], will provide additional insight.
and temperature are such that far off the singlet-doublet
crossing, the level width is of the same order or larger than ACKNOWLEDGMENTS
the tunnel splitting. There, coherent tunneling is then largely
suppressed even as a transient. Close to the crossing, how- Financial support of this work by the Deutsche Fors-
ever, the widening of the doublet enforced by the intersectehungsgemeinschafGrant No. Di 511/2-2is gratefully ac-
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