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Coherent and incoherent chaotic tunneling near singlet-doublet crossings
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In the spectrum of systems showing chaos-assisted tunneling, three-state crossings are formed when a
chaotic singlet intersects a tunnel doublet. We study the dissipative quantum dynamics in the vicinity of such
crossings. A harmonically driven double well coupled to a bath serves as a model. Markov and rotating-wave
approximations are introduced with respect to the Floquet spectrum of the time-dependent central system. The
resulting master equation is integrated numerically. We find various types of transient tunneling, determined by
the relation of the level width to the inherent energy scales of the crossing. The decay of coherent tunneling can
be significantly retarded or accelerated. Modifications of the quantum asymptotic state by the crossing are also
studied. The comparison with a simple three-state model shows that in contrast to the undamped case, the
participation of states outside the crossing cannot be neglected in the presence of dissipation.
@S1063-651X~98!05212-X#
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I. INTRODUCTION

In a quantum setting, the coexistence of regular and c
otic regions in a mixed phase space leads to a variety
uncommon coherence phenomena. Most prominent am
them is chaotic tunneling@1–14#, the coherent exchange o
probability between symmetry-related regular islands t
are separated by a chaotic layer, not by a static poten
barrier. Chaotic tunneling comes about by an interplay
classical nonlinear, typically bistable, dynamics and quan
coherence. It therefore reflects features of the classical p
space, such as the width of the chaotic layer@7,8# and the
structure of the ‘‘coast line’’@11,12# separating it from the
adjacent regular regions, as well as fine details of the qu
tum spectrum such as exact and avoided crossings. In p
ous works@7,8#, it has been shown that, as the chaotic la
grows with increasing nonlinearity, the tunnel splittin
widen collectively. Superimposed on this global trend of t
parameter dependence, however, there are strong flu
tions, occurring on a smaller parameter scale and restricte
individual tunnel doublets@6,11,13,14#. A major source of
these fluctuations are the disturbances of doublets, suff
as they are intersected by other levels. The most comm
type of such intersections is formed when a doublet, pert
ing to a pair of eigenstates located on symmetry-rela
quantizing tori, encounters a singlet that belongs to an eig
state in the chaotic sea@10#. The chaotic states, even if the
no longer come in pairs close in energy, can still be classi
as even or odd. This fact determines the structure of
singlet-doublet crossings: The partner in the doublet sha
the symmetry of the chaotic singlet is repelled by t
singlet—together, they form an avoided crossing. The p
ner with opposite symmetry must either be intersected in

*Present address: Division de Physique The´orique, Institut de
Physique Nucle´aire, F-91406 Orsay Cedex, France.
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exact crossing close to the avoided one, or else the o
within the doublet is reversed from one side of the cross
to the other. The variety of configurations of such crossin
is sketched in Fig. 1.

In the present paper, we study chaotic tunneling in
vicinity of singlet-doublet crossings, under the influence
incoherent processes. Near a crossing, level separation
viate vastly, in both directions, from the typical tunnel spl
ting ~see Fig. 1!. This is reflected in time-domain phenomen
ranging from the suppression of tunneling to a strong
crease in its rate and to complicated quantum beats@10#. In
Sec. II, we briefly review chaotic tunneling in our workin
model, a harmonically driven quartic double well@15–17#.
Singlet-doublet crossings are identified and characterized
their signature in terms of quasienergy and mean energy.
describe the behavior of the eigenstates close to a cros
and analyze the coherent dynamics in terms of a sim
three-state model.

Tunneling is associated with extremely small ener

FIG. 1. Possible configurations of quasienergy crossings
tween a chaotic singlet and a regular doublet. Different line ty
signify different parity. See Sec. II C for the labeling of the leve
Note that only for configurations~a!,~b!, is the order of the regular
doublet restored in passing through the crossing. In configurat
~c!,~d!, it is reversed.
7219 © 1998 The American Physical Society
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7220 PRE 58KOHLER, UTERMANN, HÄNGGI, AND DITTRICH
scales, all the more in the semiclassical regime we are in
ested in. It is therefore particularly sensitive to any disru
tion of coherence as it occurs due to the unavoidable c
pling to the environment. As immediate consequences,
symmetry underlying the formation of tunnel doublets
generally broken, and an additional energy scale is in
duced, the effective finite width attained by each discr
level. Tunneling and related coherence phenomena are
rendered transients that occur, if at all, on the way towa
an asymptotic equilibrium state. Singlet-doublet crossings
turn, drastically change the nondissipative energy scales
replace the two-level by a three-level structure. As a con
quence, the familiar way tunneling fades out in the prese
of dissipation is also significantly altered. Near a crossi
the coherent dynamics can last much longer than for
unperturbed doublet, despite the presence of the same d
herence than outside the crossing, establishing ‘‘cha
induced coherence.’’ Depending on temperature, it can
be destroyed on a much shorter time scale.

In Sec. III, we first outline the modifications of our mod
necessary to incorporate dissipation. We treat the quan
dissipative dynamics within the framework of the Floqu
formalism@18–23#. In the present context of an interplay o
tunneling with incoherent processes, we focus on the reg
of weak dissipation. Very long time scales are therefore
volved, both in the coherent dynamics and in the bath
sponse. In this case, the usual~Markov and rotating-wave!
approximations resorted to in the elimination of the exter
degrees of freedom, have to be reconsidered critically.
coupling to the environment indirectly couples the three l
els in the crossing to all the other states of the central sys
On the basis of numerical results for the full driven doub
well with dissipation, we reveal the limitations of the thre
level approximation and identify additional features of t
full dynamics not covered by it. In particular, we consid
the long-time asymptotics—the quantum attractor—and
phase-space structure associated with it. Section IV serve
summarize our results and to suggest directions of fur
research.

II. CONSERVATIVE CLASSICAL
AND QUANTUM DYNAMICS

A. The model and its symmetries

As a prototypical working model, we consider the quar
double well with a spatially homogeneous driving force h
monic in time. It is defined by the Hamiltonian

HDW~x,p;t !5H0~x,p!1H1~x;t !,

H0~x,p!5
p2

2
2

1

4
x21

1

64D
x4, ~1!

H1~x;t !5S xcos~vt !.

Apart from mere scaling, the classical phase space
H0(x,p) depends only on the presence or absence, and
sign, of thex2 term. Otherwise, it has no free parameter.
the quantum-mechanical case, the parameterD/\ plays the
role of an inverse quantum of action. It controls the barr
height and can be interpreted as the~approximate! number of
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doublets with energies below the top of the barrier. Acco
ingly, the classical limit is reached by lettingD/\→`. The
influence of the driving on the classical phase space struc
is characterized by the rescaled amplitude

F5S/A8D ~2!

and frequencyv. This implies that the classical dynamics
independent of the barrier heightD.

The unperturbed HamiltonianH0(x,p) is invariant under
the parityP: x→2x, p→2p, t→t. This symmetry is gen-
erally destroyed by the driving. With the above choice
H1(x;t), however, a more general, dynamical symmetry
retained@15–17,24#. It is defined by the operation

Pv: x→2x, p→2p, t→t1p/v, ~3!

and represents a generalized parity acting in the exten
phase space spanned byx, p, and phase, i.e., time
t mod (2p/v). The invariance underPv of H(x,p;t) allows
us to classify all its quantum eigenstates as even or odd

As a consequence of the periodic time dependence
H(x,p;t), the relevant generator of the quantum dynamics
now the Floquet operator@25–29#

U5T expS 2
i

\E0

2p/v

dt H~ t ! D , ~4!

where T denotes time ordering. According to the Floqu
theorem, the adiabatic states of the system are the eigens
of U. They can be written in the form

uca~ t !&5e2 i eat/\ufa~ t !&, ~5!

with

ufa~ t12p/v!&5ufa~ t !&.

Expanded in the basis spanned by these Floquet states
propagator of the driven system reads

U~ t8,t !5(
a

e2 i ea~ t82t !/\ufa~ t8!&^fa~ t !u. ~6!

The associated eigenphasesea , referred to as quasienergie
come in classes,ea,n5ea1n\v, n50,61,62, . . . .This is
suggested by a Fourier expansion of theufa(t)&,

ufa~ t !&5(
n

uca,n& e2 invt,

uca,n&5
v

2pE0

2p/v

dt ufa~ t !& einvt. ~7!

The indexn counts the number of quanta in the driving fiel
Otherwise the members of a classa are physically equiva-
lent. Therefore, the quasienergy spectrum can be reduce
a single ‘‘Brillouin zone,’’ 2\v/2<e,\v/2.

Since the quasienergies have the character of phases,
can be ordered only locally, not globally. A quantity that
defined on the full real axis and therefore does allow fo
complete ordering, is the mean energy@28,29#
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Ea5
v

2pE0

2p/v

dt ^ca~ t !u H~ t ! uca~ t !&

[Š^fa~ t !u H~ t ! ufa~ t !&‹. ~8!

It is related to the corresponding quasienergy by

Ea5ea1Š^fa~ t !u i\
]

]t
ufa~ t !&‹, ~9!

where the outer angle brackets denote the time average
one period of the driving, as indicated in Eq.~8!. The second
term on the right-hand side plays the role of a geome
phase accumulated over this period@30#. Without the driv-
ing, Ea5ea , as it should be. By inserting the Fourier expa
sion ~7! the mean energy takes the form

Ea5(
n

~ea1n\v! ^ca,nuca,n&. ~10!

It shows that then th Floquet channel gives a contributio
ea1n\v to the mean energy, weighted by the Fourier co
ficient ^ca,nuca,n& @29#.

Quasienergies and Floquet states are obtained numeri
by solving the matrix eigenvalue equation@25,28,29#

(
n8

(
k8

Hn,k;n8,k8cn8,k85ecn,k , ~11!

equivalent to the time-dependent Schro¨dinger equation. It is
derived by inserting the eigenstates~5! into the Schro¨dinger
equation, Fourier expanding, and using the representatio
the eigenstates of the unperturbed Hamiltonian,H0uCk&
5EkuCk&. We introduced the abbreviations

Hn,k;n8,k85~Ek2n\v!dn2n8dk2k8

1
1

2
S xk,k8 ~dn212n81dn112n8!,

cn,k5^Ckucn&,

xk,k85^Cku x uCk8&.

The invariance of the system underPv is of considerable
help in solving Eq.~11!, because it completely decouples t
respective systems of eigenvalue equations for the even
odd subspaces@7,8#.

B. Coherent chaotic tunneling

With the drivingH1(x;t) switched off, the classical phas
space generated byH(x,p;t) exhibits the constituent feature
of a bistable Hamiltonian system. There is a separatrix aE
50. It forms the border between two sets of trajectories: O
set, withE,0, comes in symmetry-related pairs, each pa
ner of which oscillates in either one of the two potent
minima. The other set consists of unpaired trajectories, w
E.0, that encircle both wells in a spatially symmetric fas
ion.

Increasing the amplitude of the driving from zero onwar
has two principal consequences for the classical dynam
ver
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~Fig. 2!: The separatrix is destroyed as a closed curve
replaced by a homoclinic tangle@31# of stable and unstable
manifolds. As a whole, it forms a chaotic layer in the vicini
and with the topology of the former separatrix. It opens t
way for diffusive transport between the two potential wel
Due to the nonlinearity of the potential, there is an infin
set of resonances of the driving with the unperturbed moti
both inside and outside the wells@32,33#. Since the period of
the unperturbed closed trajectories diverges forE→0, the
resonances accumulate towards the separatrix of the un
turbed system. By its sheer phase-space area, the first
nance~the one for which the periods of the driving and of th
unperturbed oscillation are in a ratio of 1:1! is prominent
among the others and soon~in terms of increasing amplitude
F) exceeds the size of the ‘‘order-zero’’ regular areas n
the bottom of each well. For the values ofF andv chosen in
the numerical calculations in this paper, all higher res
nances remain negligible in size. The borderline between
chaotic layer along the former separatrix and the regular
gions within and outside the wells is therefore quite shar
defined. The ‘‘coastal strip’’ formed by hierarchies of regul
islands around higher resonances remains narrow. For
tunneling dynamics, the role of states located in the bor
region @11# is therefore not significant here.

Both major tendencies in the evolution of the classi
phase space—extension of the chaotic layer and growt
the first resonance—leave their specific traces in the quas
ergy spectrum. The tunnel doublets characterizing the un
turbed spectrum forE,0 pertain to states located on pairs
symmetry-related quantizing tori in the regular regio
within the wells. With increasing size of the chaotic laye
the quantizing tori successively resolve in the chaotic s
The corresponding doublets disappear as distinct struct
in the spectrum as they attain a splitting of the same orde
the mean level separation. The gradual widening of the d
blets proceeds as a smooth function of the driving amplitu
@7,8#. This function roughly obeys a power law@34#, see Fig.
3. As soon as a pair of states is no longer supported by
toruslike manifold, including fractal@35# and vague tori@36#,
the corresponding eigenvalues detach themselves from
regular ladder to which they formerly belonged. They c
then fluctuate freely in the spectrum and thereby ‘‘collide
with other chaotic singlets or regular doublets.

FIG. 2. Stroboscopic classical phase-space portraits, atvt
52pn, of the harmonically driven quartic double well, Eq.~1!, at
F50.015,v50.982.
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The appearance of a regular region, large enough to
commodate several eigenstates, around the first reson
introduces a second ladder of doublets into the spectr
Size and shape of the first resonance vary in a way diffe
from the fate of the main regular region. The correspond
doublet ladder therefore moves in the spectrum indep
dently of the doublets that pertain to the main regular regi
and of the chaotic singlets. This gives rise to additio
singlet-doublet and even to doublet-doublet encounters.

C. Three-level crossings

Among the various types of quasienergy crossings
occur according to the above scenario, those involvin
regular doublet and a chaotic singlet are the most comm
In order to give a quantitative account of such crossings
the associated coherent dynamics, and for later referenc
the context of the incoherent dynamics, we shall now disc
them in terms of a simple three-state model, devised muc
the spirit of Ref.@5#.

Far to the left of the crossing, we expect the followin
situation: There is a doublet of Floquet states

uc r
1~ t !&5e2 i er

1t/\uf r
1~ t !&, ~12!

uc r
2~ t !&5e2 i ~er

1
1D!t/\uf r

2~ t !&, ~13!

with even ~superscript1! and odd~2! generalized parity,
respectively, residing on a pair of quantizing tori in one
the regular~subscriptr! regions. We have assumed that t
quasienergy splitting~as opposed to the unperturbed sp
ting! is e r

22e r
15D.0. The global relative phases can b

chosen such that the superpositions

ucR,L~ t !&5
1

A2
@ uc r

1~ t !&6uc r
2~ t !&] ~14!

are initially localized in the right and the left well, respe
tively, and tunnel back and forth with a frequencyD/\ given
by the tunnel splitting in the presence of the driving.

FIG. 3. Dependence on the driving amplitude of the splitting
the ground-state doublet, of the harmonically driven quartic dou
well, Eq. ~1!, at D/\58 andv50.95. Diamonds are quasienerg
crosses are mean-energy splittings. The dips interrupting
smooth parameter dependence indicate crossings of the gro
state doublet with chaotic singlets~after Ref.@8#!.
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As the third player, we introduce a Floquet state

ucc
2~ t !&5e2 i ~er

1
1D1Dc!t/\ufc

2~ t !&, ~15!

located mainly in the chaotic~subscript c! layer, so that its
time-periodic partufc

2(t)& contains a large number of ha
monics. Without loss of generality, its generalized parity
fixed to be odd. For the quasienergy, we have assumed
ec

25e r
11D1Dc , whereuDcu can be regarded as a measu

of the distance from the crossing.
The structure of the classical phase space then imp

that the mean energy of the chaotic state should be clos
the top of the barrier and far above that of the doublet. W
assume, as for the quasienergies, a small splitting of
mean energies pertaining to the regular doublet,Er

22Er
1

!Ec
22Er

6 .
In order to model an avoided crossing betweenuc r

2& and
ucc

2&, we suppose that there is a nonvanishing matrix e
ment^^f r

2uHDWufc
2&&5b.0. For the singlet-doublet cross

ings under study, we typically find thatD!b!\v. Neglect-
ing the coupling with all other states, we obtain the thre
state~subscript 3s! Floquet Hamiltonian

H3s5e r
11S 0 0 0

0 D b

0 b D1Dc

D , ~16!

in the three-dimensional Hilbert space spanned
$uf r

1(t)&,uf r
2(t)&,ufc

2(t)&%. Its Floquet states read

uc0
1~ t !&5e2 i e0

1t/\uf r
1~ t !&,

uc1
2~ t !&5e2 i e1

2t/\@ uf r
2~ t !&cosb2ufc

2~ t !&sinb],
~17!

uc2
2~ t !&5e2 i e2

2t/\@ uf r
2~ t !&sinb1ufc

2~ t !&cosb].

Their quasienergies are

e0
15e r

1 , e1,2
2 5e r

11D1
1

2
Dc7

1

2
ADc

214b2. ~18!

The mean energies are approximately given by

E0
15Er

1 ,

E1
25Er

2cos2b1Ec
2sin2b, ~19!

E2
25Er

2sin2b1Ec
2cos2b,

where contributions of the matrix elementb have been ne-
glected. The angleb describes the mixing between the Fl
quet statesuc r

2& anducc
2& and is a measure of the distance

the avoided crossing. By diagonalizing the Hamiltonian~16!,
we obtain

2b5arctanS 2b

Dc
D , 0,b,

p

2
. ~20!
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For b→p/2, corresponding to2Dc@b, we retain the situa-
tion far left of the crossing, as outlined above, withuc1

2&
'ucc

2&, uc2
2&'uc r

2&. To the far right of the crossing, i.e., fo
b→0 or Dc@b, the exact eigenstatesuc1

2& and uc2
2& have

interchanged their identity with respect to the phase-sp
structure@10#. Here, we haveuc1

2&'uc r
2& and uc2

2&'ucc
2&.

The mean energy is essentially determined by the ph
space structure. Therefore, there is also an exchange oE1

2

andE2
2 in an exact crossing, cf. Eq.~19!, while E0

1 remains
unaffected@Fig. 4~b!#. The quasienergiese0

1 and e1
2 must

intersect close to the avoided crossing ofe1
2 and e2

2 @Fig.
4~a!#. Their crossing is exact, since they pertain to states w
opposite parity@cf. Fig. 1~a!,1~b!#.

Numerical evidence shows that this idealized picture
not always correct. It may well happen that even far aw
from a crossing, the doublet splitting does not exactly ret
to its value on the opposite side@cf. Figs. 5~a!, 6#. It is even
possible that an exact crossing ofe0

1 and e1
2 does not take

place at all in the vicinity of the crossing. In that case, t
relation of the quasienergies in the doublet gets reversed
the crossing@Fig. 1~c!,1~d!#. Nevertheless, the above sc
nario captures the essential features.

To study the dynamics of the tunneling process, we fo
on the state

FIG. 4. A singlet-doublet crossing, according to a three-st
model, Eq.~16!, in terms of the dependence of the quasienerg
@panel ~a!# and the mean energies~b! on the coupling paramete
Dc /b. Unperturbed energies are marked by dotted lines, the e
gies for the case with coupling by full lines for even and dash
lines for odd states.
ce

e-

h

s
y
n

ia

s

uc~ t !&5
1

A2
@e2 i e0

1t/\uf0
1~ t !&1e2 i e1

2t/\uf1
2~ t !&cosb

1e2 i e2
2t/\uf2

2~ t !&sinb]. ~21!

It is constructed such that att50, it corresponds to the de
composition of (uc r

1&1uc r
2&)/A2 @cf. Eq. ~14!# in the basis

e
s

r-
d

FIG. 5. Singlet-doublet crossing found numerically for th
driven double well, Eq.~1!, at D/\54 andv50.982, in terms of
the dependence of the quasienergies~a! and the mean energies~b!
on the driving amplitudeF5S/A8D. Values of the driving ampli-
tude used in Figs. 7 are marked by dotted vertical lines. Full
dashed lines indicate energies of even and odd states, respect
Bold lines give the mean energies of the chaotic singlet and
ground-state doublet depicted in panel a.

FIG. 6. Splitting of the lowest doublets forD/\54 and v
50.982. The arrows indicate the locations of the exact and
avoided crossing within a three-level crossing of the type sketc
in Fig. 1~a!.
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~17! at finite distance from the crossing. Therefore, it is i
tially localized in the regular region in the right well an
follows the time evolution under the Hamiltonian~16!. From
Eqs.~14! and ~17!, we find the probabilities for its evolving
into ucR&, ucL&, or ucc&, respectively, to be

PR~ t !5 z^cR~ t !uc~ t !& z2

5
1

2 S 11cos
e1t

\
cos2b1cos

e2t

\
sin2b

1Fcos
~e12e2!t

\
21Gcos2b sin2b D ,

PL~ t !5 z^cL~ t !uc~ t !& z2

5
1

2 S 12cos
e1t

\
cos2b2cos

e2t

\
sin2b

1Fcos
~e12e2!t

\
21Gcos2b sin2b D , ~22!

Pc~ t !5 z^cc~ t !uc~ t !& z25F12cos
~e12e2!t

\ Gcos2b sin2b.

At a sufficient distance from the crossing, there is only
little mixing between the regular and the chaotic states,
sinb!1 or cosb!1. The tunneling process then follows th
familiar two-state dynamics involving onlyuc r

1& and uc r
2&,

with tunnel frequencyD/\ @Fig. 7~a!#.
Close to the avoided crossing, cosb and sinb are of the

same order of magnitude, anduc1
2&, uc2

2& become very simi-
lar to one another. Both now have support in the chao
layer as well as in the symmetry-related regular regions
thus are of a hybrid nature. Here, the tunneling involves
the three states and must at least be described by a t
level system. The exchange of probability between the
regular regions proceeds via a ‘‘stopover’’ in the chao
region @5,10#. The three quasienergy differences that det
mine the time scales of this process are in general all dif
ent, leading to complicated beats@Fig. 7~b!#.

However, for Dc52D/2, the 2 quasienergiese1
2 and

2e2
2 degenerate. At this point, which marks the center of

crossing, the number of different frequencies in the thr
level dynamics reduces to two again. This restores the fa
iar coherent tunneling in the sense that there is agai
simple periodic exchange of probability between the regu
regions@10#. However, the rate is much larger if compared
the situation far off the crossing, and the chaotic region
now temporarily populated during each probability transf
twice per tunneling cycle@Fig. 7~c!#.

In order to illustrate the above three-state model and
demonstrate its adequacy, we have numerically studie
singlet-doublet crossing that occurs for the double-well
tential, Eq. ~1!, with D/\54, at a driving frequencyv
50.982 and amplitudeF5S/A8D50.015029~Figs. 5 and
6!. A comparison~not shown! of the appropriately scaled
three-state theory~Fig. 4! with this real singlet-doublet cross
ing ~Fig. 5! shows satisfactory agreement. Note that in
real crossing, the quasienergy of the chaotic singletde-
creasesas a function ofF, so that the exact crossing occu
to the left of the avoided one.
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III. INCOHERENT QUANTUM DYNAMICS

A. Master equation

1. System-bath model

To achieve a microscopic model of dissipation, we cou
the system~1! bilinearly to a bath of noninteracting harmon
oscillators@37#. The total Hamiltonian of system and bath
then given by

H~ t !5HDW~ t !1 (
n51

` F pn
2

2mn
1

mn

2
vn

2S xn2
gn

mnvn
2

xD 2G .

~23!

FIG. 7. Time evolution of a state initially localized in the righ
well, in the vicinity of the singlet-doublet crossing shown in Fig.
in terms of the probabilities to be in the right well~return probabil-
ity, marked by full lines!, in the reflected state in the left we
~dashed!, or in the chaotic stateucc& ~dotted!. Parameter values ar
as in Fig. 5, andF50.0145~a!, 0.0149~b!, 0.015029~c!.



le

ou

he
-

a
tio

is

io
in

e
rd
c-

se
vin
b
d

,
-

is

on

n

n
-

Eq.

re

erve

ote

der

a

PRE 58 7225COHERENT AND INCOHERENT CHAOTIC TUNNELING . . .
We here couple the positionx of the system to an ensemb
of oscillators with massesmn , frequenciesvn , momenta
pn , and coordinatesxn , with the coupling strengthgn . The
bath is fully characterized by the spectral density of the c
pling energy

J~v!5p (
n51

` gn
2

2mnvn
d~v2vn!. ~24!

For the time evolution we choose an initial condition of t
Feynman-Vernon type: att5t0, the bath is in thermal equi
librium and uncorrelated to the system, i.e.,

r~ t0!5rS~ t0! ^ rB,eq, ~25!

whererB,eq5exp(2bHB)/trBexp(2bHB) is the canonical en-
semble of the bath and 1/b5kBT. Due to the bilinearity of
the system-bath coupling, one can always eliminate the b
variables to get an exact, closed integro-differential equa
for the reduced density matrixrS(t)5trBr(t), which de-
scribes the dynamics of the central system, subject to d
pation @38#.

2. Born-Markov approximation

In most cases, however, the integrodifferential equat
for rS(t) can be solved only approximately. In particular,
the limit of weak coupling,

g!kBT/\, ~26!

g!uea2ea8u/\, ~27!

it is possible to truncate the time-dependent perturbation
pansion in the system-bath interaction after the second-o
term. The quantityg, to be defined below, denotes the effe
tive damping of the dissipative system, anduea2ea8u/\ are
the transition frequencies of the central system. In the pre
case, the central system is understood to include the dri
@20–23#, so that the transition frequencies are given
quasienergy differences. The autocorrelations of the bath
cay on a time scale\/kBT and thus in the present limit
instantaneously on the time scale 1/g of the system correla
tions. With the initial preparation~25!, the equation of mo-
tion for the reduced density matrix in this approximation
given by @23#

ṙS~ t !52
i

\
@HS~ t !,rS~ t !#1

1

p\E2`

`

dv J~v!nth~\v!

3E
0

`

dt$eivt@ x̃~ t2t,t !rS~ t !,x#1H.c.%, ~28!

wherex̃(t8,t) denotes the position operator in the interacti
picture defined by

x̃~ t8,t !5U†~ t8,t ! x U~ t8,t !, ~29!

with U(t8,t), the propagator of the conservative drive
double well, given in Eq.~6!. H.c. denotes the Hermitian
conjugate and
-

th
n

si-

n

x-
er

nt
g

y
e-

nth~e!5
1

ee/kBT21
52nth~2e!21 ~30!

is the thermal occupation of the bath oscillator with energye.
To achieve a more compact notation, we requireJ(2v)5
2J(v). In the following, we shall restrict ourselves to a
Ohmic bath,J(v)5mgv. This defines the effective damp
ing constantg.

We use the time-periodic componentsufa(t)& of the Flo-
quet states as a basis to expand the density operator,
~28!. Expressing the matrix elements

Xab~ t !5^fa~ t !uxufb~ t !& ~31!

of the position operator by their Fourier coefficients

Xab,n5Š^fa~ t !ux e2 invtufb~ t !&‹5Xba,2n* , ~32!

Xab~ t !5(
n

einvtXab,n , ~33!

yields for the matrix elementssab of the reduced density
matrix rS the equation of motion@18,19,21,23#

ṡab~ t !5
d

dt
^fa~ t !urS~ t !ufb~ t !&

52
i

\
~ea2eb!sab~ t !

1 (
a8b8nn8

~Naa8,nXaa8,nsa8b8Xb8b,n8

2Na8b8,nXaa8,n8Xaa8,nsb8b!ei ~n1n8!vt1H.c.

~34!

Note that the coefficients of this differential equation a
periodic in time with the period of the driving. TheNab,n are
given by

Nab,n5N~ea2eb1n\v!, N~e!5
mge

\2
nth~e!. ~35!

For e@kBT, N(e) approaches zero.
Since the position operatorx is odd under transformation

with the generalized parity~3!, the master equations~28! and
~34! are invariant under transformation withPv . Therefore,
both the conservative and the dissipative dynamics pres
the parity of the operatorufa&^fbu. It is even if ufa& and
ufb& belong to the same parity class and odd otherwise. N
that in particular, the projectorsufa&^fau and thus all den-
sity matrices diagonal in the Floquet basis are even un
Pv .

3. Rotating-wave approximation

Assuming that dissipative effects are relevant only on
time scale much larger than the period 2p/v of the driving,
we average the coefficients of the master equation~34! over
2p/v and end up with the equation of motion
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ṡab~ t !52
i

\
~ea2eb!sab~ t !1 (

a8b8
Laba8b8sa8b8 ,

~36!

with the time-independent dissipative part

Laba8b85(
n

~Naa8,n1Nbb8,n!Xaa8,nXb8b,2n

2dbb8 (
b9,n

Nb9a8,nXab9,2nXb9a8,n

2daa8(
a9n

Na9b8,nXb8a9,2nXa9b,n . ~37!

This step amounts effectively to a rotating-wave approxim
tion. It is, however, less restrictive than the rotating-wa
approximation introduced in Refs.@20,21# where dissipative
effects are averaged over the generally longer time s
maxa,b,n@2p\/(ea2eb1n\v)#.

B. Dissipative chaos-assisted tunneling

The crucial effect of dissipation on a quantum system
the disruption of coherence: a coherent superposition evo
into an incoherent mixture. Thus, phenomena based on
herence, such as tunneling, are rendered transients that
out on a finite time scaletdecoh. In general, for driven tun-
neling in the weakly damped regime, this time scale g
shorter for higher temperatures, reflecting the growth of tr
sition rates@39#. However, there exist counterintuitive e
fects. For example, in the vicinity of an exact crossing of
ground-state quasienergies, the coherent suppression of
neling @15# can be stabilized with higher temperatur
@18,19,40# until levels outside the doublet start to play a ro
We have studied dissipative chaos-assisted tunneling
merically, using again the real singlet-doublet crossing int
duced in Sec. II C~see Fig. 5! as our working example.

In the vicinity of a singlet-doublet crossing, the tunn
splitting increases significantly—the essence of chao
assisted tunneling. During the tunneling, the chaotic sin
becomes populated periodically with frequencyue2

22e1
2u/\,

cf. Eq. ~22! and Fig. 7. The high mean energy of this sing
results in an enhanced decay of coherence at times w
ucc& is populated~Fig. 8!. For the relaxation towards th
asymptotic state, also the slower transitions within doub
are relevant. Therefore, the corresponding time scalet relax
can be much larger thantdecoh~Fig. 9!.

To obtain quantitative estimates for the dissipative ti
scales, we approximatetdecoh by the decay rate of trr2, a
measure of coherence, averaged over time,

1

tdecoh
52

1

t E0

t

dt8
d

dt8
tr r2~ t8! ~38!

5
1

t
@ tr r2~0!2tr r2~ t !#. ~39!

Because of the stepwise decay of the coherence~Fig. 8!, we
have chosen the propagation timet as ann-fold multiple of
the duration 2p/ue2

22e1
2u of the chaotic beats. For this pro
-
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cedure to be meaningful,n should be so large that the cohe
ence decays substantially during the timet ~in our numerical
studies to a value of approximately 0.9!. The time scalet relax
of the approach to the asymptotic state is given by the re
rocal of the smallest real part of the eigenvalues of the d
sipative kernel.

Outside the singlet-doublet crossing we find that the
cay of coherence and the relaxation take place on roughly

FIG. 8. Occupation probabilities as in Figs. 7~a! and 7~c!, but in
the presence of dissipation. The dash-dotted line shows the
evolution of trr2. The parameter values areD/\54, v50.982,g
51026, kBT/\51024, andF50.0145~a!, 0.015029~b!. The inset
in ~a! is a blow up of the rectangle in the upper left corner of th
panel.

FIG. 9. Time evolution of the return probabilityPR ~full line!
and the coherence function trr2 ~dash-dotted! during loss and re-
gain of coherence. The parameter values are as in Fig. 8~b!.
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same time scale~Fig. 10!. At F'0.013, the chaotic single
induces an exact crossing of the ground-state quasiene
~see Fig. 6!, resulting in a stabilization of coherence wi
increasing temperature. At the center of the avoided cross
the decay of coherence becomes much faster and is e
tially independent of temperature. This indicates that tran
tions from states with mean energy far above the gro
state play a crucial role.

C. Asymptotic state

As the dynamics described by the master equation~28! is
dissipative, it converges in the long-time limit to a
asymptotic stater`(t). In general, this attractor remains tim
dependent but shares all the symmetries of the central
tem, i.e., here, periodicity and generalized parity. Howev
the coefficients of the master equation~37! for the matrix
elementssab , valid within a rotating-wave approximation
are time independent and so the asymptotic solution als
This means that we have eliminated the explicit time dep
dence of the attractor by representing it in the Floquet b
and introducing a mild rotating-wave approximation.

To gain some qualitative insight into the asymptotic so
tion, we focus on the diagonal elements

Laaa8a852(
n

Naa8,nuXaa8,nu2, aÞa8, ~40!

FIG. 10. Time scales of the decay of trr2 ~a! and of the relax-
ation towards the asymptotic solution~b! near the singlet-double
crossing. Near the exact crossing (F'0.013, full vertical line! co-
herence is stabilized, whereas at the center of the avoided cro
(F'0.015, dashed vertical line! the decay of coherence is accele
ated. The parameter values areD/\54, v50.982,g51026, tem-
perature as given in the legend.
ies

g,
en-
i-
d

s-
r,

is.
-
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-

of the dissipative kernel. They give the rates of the dir
transitions fromufa8& to ufa&. Within a cruder rotating-
wave approximation@21#, these are the only nonvanishin
contributions to the master equation which affect the dia
nal elementssaa of the density matrix.

In the case of zero driving amplitude, the Floquet sta
ufa& reduce to the eigenstates of the undriven Hamilton
HDW . The only nonvanishing Fourier component is th
uca,0&, and the quasienergiesea reduce to the correspondin
eigenenergiesEa . Thus Laaa8a8 consists of a single term
proportional toN(ea2ea8) only. It describes two kinds of
thermal transitions: decay to states with lower energy and
the energy difference is less thankBT, thermal activation to
states with higher energy. The ratio of the direct transitio
forth and back then reads

Laaa8a8

La8a8aa

5expS 2
~ea2ea8!

kBT D . ~41!

We have detailed balance. Therefore, the steady-state s
tion saa8(`);exp(2ea /kBT) daa8 . In particular, the occupa
tion probability decays monotonically with the energy of t
eigenstates. In the limitkBT→0, the system tends to occup
the ground state only.

For a strong driving, each Floquet stateufa& contains a
large number of Fourier components andLaaa8a8 is given by
a sum over contributions with quasienergiesea2ea81n\v.
Thus a decay to states with ‘‘higher’’ quasienergy~recall that
quasienergies do not allow for a global ordering! becomes
possible due to terms withn,0. Physically, they describe
dissipative transitions under absorption of driving-fie
quanta. Correspondingly, the system tends to occupy Flo
states comprising many Fourier components with low ind
n. According to Eq.~10!, these states have low mean energ

The effects under study are found for a driving with
frequency of the order of unity. Thus for a quasienergy do
blet, i.e., far off the three-level crossing, we haveuea2ea8u
!\v, and La8a8aa is dominated by contributions withn
,0, where the splitting has only small influence. Howev
as a consequence of symmetry, the splitting is the main
ference between the two partners of the quasienergy dou
Therefore, with respect to dissipation, both should beh
similarly. In particular, one expects an equal population
the doublets even in the limit of zero temperature@Fig.
11~a!#. This is in contrast to the undriven case.

In the vicinity of a singlet-doublet crossing the situation
more subtle. Here, the odd partner, say, of the doublet m
with a chaotic singlet, cf. Eq.~17!, and thus acquires com
ponents with higher energy. Due to the high mean energyEc

2

of the chaotic singlet, close to the top of the barrier, t
decay back to the ground state can also proceed indire
via other states with mean energy belowEc

2 . Thusuf1
2& and

uf2
2& are depleted and mainlyuf0

1& will be populated. How-
ever, if the temperature is significantly above the splitting
the avoided crossing, thermal activation fromuf0

1& to uf1,2
2 &,

accompanied by depletion via the states belowEc
2 , becomes

possible. Thus asymptotically, all these states become p
lated in a steady flow@Figs. 11~b!,11~c!#.

An important global characteristic of the asymptotic sta
is its coherence trr`

2 . Its value gives approximately the re

ing
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ciprocal of the number of incoherently occupied states
equals unity only if the attractor is a pure state. According
the above scenario, we expect trr`

2 to assume the value 1/2
in a regime with strong driving but preserved doublet str
ture, reflecting the incoherent population of the ground-s
doublet. In the vicinity of the singlet-doublet crossing whe
the doublet structure is dissolved, its value should be clos
unity for temperatureskBT!b and much less than unity fo
kBT@b ~Figs. 12,13!. This means that the crossing of th
chaotic singlet with the regular doublet leads to an impro
ment of coherence if the temperature is below the splitting
the avoided crossing, and a loss of coherence for temp
tures above the splitting. This phenomenon amounts t
chaos-induced coherenceor incoherence, respectively.

FIG. 11. Occupation probabilitysaa of the Floquet statesuca&
in the long-time limit. The parameter values areD/\54, v
50.982,g51026, andF50.013~a!, 0.0145~b!, 0.015029~c!, tem-
perature as given in the legend.
It
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-
te

to

-
f

ra-
a

The crucial role of the decay via states not involved in t
three-level crossing can be demonstrated by comparin
with the dissipative dynamics including only these three le
els ~plus the bath!. At the crossing, the three-state mod
results in a completely different type of asymptotic sta
~Fig. 13!. The failure of the three-state model in the presen
of dissipation clearly indicates that in the vicinity of th
singlet-doublet crossing, it is important to take a large se
levels into account.

IV. CONCLUSION

Nonlinear systems with a mixed phase space still rep
sent a formidable challenge for a theoretical understand
On the classical level, the intricate fractal interweaving
regular and chaotic regions of phase space is far from be
exhaustively studied. Quantum-mechanical uncertainty
duces the richness of the classical phase-space structure
at the same time, coherence effects like tunneling add n
elements to the dynamics. For example, in a bistable sys
a driving with an energy in the regime between the unp
turbed tunnel splittings and the typical separation of doub
leads to transport phenomena that combine tunneling

FIG. 12. Coherence of the asymptotic state in the vicinity o
singlet-doublet crossing for different temperatures as given in
legend. The other parameter values areD/\54, v50.982, andg
51026.

FIG. 13. Coherence of the asymptotic state in the vicinity o
singlet-doublet crossing forF50.013~a! andF50.015029~b!: ex-
act calculation~full line! compared to the values resulting from
three-level description~dashed! of the dissipative dynamics. The
other parameter values areD/\54, v50.982, andg51026.
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classical chaotic diffusion as essential elements. Yet ano
basic energy scale enters if the unavoidable coupling of
system to its environment is taken into account. If the fin
width the levels attain in the presence of dissipation is co
parable, in turn, to the energies characterizing driven tun
ing, unfamiliar phenomena due to the interplay of cha
tunneling, and decoherence occur in the transient dynam
and possibly also in the asymptotic state of the driv
damped quantum system.

In this paper, we have selected a specific case out of
host of problems to be studied in this field: dissipative c
otic tunneling in the vicinity of crossings of chaotic single
with tunnel doublets. In order to obtain a firm quantitati
basis, we have endowed a prototypical model for cha
tunneling, a harmonically driven double well, with dissip
tion. Thereby, we have followed the usual approach of c
pling to a heat bath, but adapted to the periodic time dep
dence of the central system. Moreover, we have caref
avoided to destroy, by the approximations introduced in
derivation of a master equation, the specific spectral cha
teristics of chaotic tunneling that we are interested in. A
simple intuitive model to compare against, we have c
structed a three-state system which in the case of vanis
dissipation, provides a faithful description of an isolat
singlet-doublet crossing.

As an example for the interplay of chaotic tunneling w
dissipation, we mention an effect that might be term
‘‘chaos-induced coherence’’ for short. Suppose that damp
and temperature are such that far off the singlet-dou
crossing, the level width is of the same order or larger th
the tunnel splitting. There, coherent tunneling is then larg
suppressed even as a transient. Close to the crossing,
ever, the widening of the doublet enforced by the interse
ing third level creates a separation of the time scales of
coherent tunneling and of its decay due to incoherent p
cesses, without altering the dissipation as such. As a co
quence, the transient dynamics now exhibits many tunne
cycles, each of which includes two ‘‘stop overs’’ in the ch
P.
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otic phase-space region, one on the way to, one on the
back.

The study of the asymptotic state, the ‘‘quantum attra
tor,’’ demonstrates clearly that a three-state model of
singlet-doublet crossing is no longer adequate once diss
tion is effective. This is so because the coupling to the h
bath enables processes of decay and thermal activation
connect the states in the crossing with other, ‘‘externa
states of the central system. In the presence of driving,
asymptotic state is no longer literally a state of equilibriu
Rather, incoherent processes create a steady flow of p
ability involving states within as well as outside the crossin
As a result, the composition of the asymptotic state,
pressed, for example, by its coherence trr`

2 , will be mark-
edly different at the center of the crossing as compared to
asymptotic state far away from the crossing, even if tha
barely visible in the corresponding phase-space structure

Many more phenomena at the overlap of chaos, tunnel
and dissipation await being unraveled. They include fo
state crossings formed when two doublets intersect, cha
Bloch tunneling along extended potentials with a large nu
ber of unit cells instead of just 2, the influence of decoh
ence on a multistep mechanism of chaotic tunneling@11,12#
and transient tunneling between coexisting strange attrac
to mention only a few. At the same time, analytical too
more specifically tailored to the investigation of th
quantum-classical correspondence in mixed systems, suc
a phase-space entropy@41#, will provide additional insight.
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